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In this Brief Report we present a version of a network growth model, generalized in order to describe the
behavior of social networks. The case of study considered is the preprint archive at cul.arxiv.org. Each node
corresponds to a scientist, and a link is present whenever two authors wrote a paper together. This graph is a
nice example of degree-assortative network, that is, to say a network where sites with similar degree are
connected to each other. The model presented is one of the few able to reproduce such behavior, giving some
insight on the microscopic dynamics at the basis of the graph structure.
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Networks [1,2] are present in different phenomena. The
Internet [3,4] is a graph composed by different computers,
connected by cables; the WWW[5,6] is a graph composed
by HTML documents connected by hyperlinks; even social
structures[7,8] can be described as graphs. In the latter case
the nodes are individuals connected by different relation-
ships. Even if the degree probability distributionPskd (i.e.,
the frequency to find a numberk of links per node) is very
often scale free(i.e., Pskd~k−g), other quantities allow to
distinguish between the various cases. For such purpose, one
of the most interesting is the assortativity by degree. Assor-
tativity can be defined as the tendency for nodes in a social
network to form connections preferentially to others similar
to them[9]. This mechanism has been proposed as the key
ingredient for the formation of communities in networks
[10,11]. Using this quantity, it is possible to distinguish the
technological networks, where instead, the behavior is rather
degree disassortative, so that vertices tend to be linked to
others different from them. Despite the relative simplicity of
such behavior few models[12–14] of network growth are
able to reproduce the formation of communities and no one
explains the difference between social and technological net-
works.

Here we analyze a specific case of social network,
namely, the ArXiv:cond-mat repository of preprints at cu-
l.arxiv.gov collected by Mark Newman[7]. The nodes are
the authors of the various papers and a link is present be-
tween them whenever they wrote at least one paper together.
We are able to reproduce most of the features of such net-
work by a suitable modification of a model presented in Ref.
[15]. The quantities we measured in the real data and in the
model are thedegreeprobability distribution, thedegree cor-
relation between neighbor sites, theclustering, and thesite
betweennessprobability distribution. A summary of the re-
sults is reported in Table I.

The degree is the number of links per node. As expected,
the degree probability distribution of the cond-mat data show
a power law behavior of the kindPskd~k−g with g=3 (see
diamonds in Fig. 1).

We then measure the degree correlation between nodes.
This is done by introducing the quantityKnnskd, giving the
average degree of the site neighbors of one site whose degree

is k. Knn increases if nodes are correlated by degree(assor-
tative networks). It decreases if they are anticorrelated(dis-
assortative networks). It is flat if they are uncorrelated(for
example, in the Bohm-Aharonov(BA) model [16]). Knn in
the data has an increasing trend, consistent with our expec-
tation for an assortative network. A power law seems to be
an appropriate fit in the region of growthKnnskd~kf wheref
is about 0.2(See diamonds in Fig. 2). Another measure of
assortativity we considered is the assortativity coefficientr.
A complete definition of this quantity can be found in Ref.
[17], here we can say that it is proportional to the connected
degree-degree correlation function. In this Brief Report we
find that bothr andf have the same behavior by varying the
parameters of the model. We therefore focus our analysis
only on thef.

Clustering coefficientci for every sitei gives the probabil-
ity that two nearest neighbors of vertexi are also neighbors
each other.Ccskd, is the average clustering coefficient for
sites whose degree isk, and it measures the tendency to form
cliques where each nearest neighbor of a node(with degree
k) is connected to each other. In real networks this usually
decreases with a power lawCcskd~kc (c=−0.8 for the data
we analyzed) because hubs tend to play the role of connec-
tions between separate clusters in the graph, i.e., clusters that
have few other interconnections than the ones passing
through the hub. Then the high-degree node tends to have
low-clustering coefficient.

The betweennessbi of a vertexi gives the probability that
the site i is in the path between two other vertices in the
graph. Therefore it might be interpreted as the amount of the
role played by the vertexi in social relation between two
personsj andk. This quantity behaves as a power law both
in its distributionPsbd~b−hsh=2.2d and in dependence upon
k. Analogously to the clustering case we defined the average
betweennessbskd for vertices whose degree isk. From Fig. 3
we find bskd~k« with «=1.81.

The model we defined in order to reproduce the data is
inspired to the preferential attachment one[6]. The main
variation consists in allowing growth by addition of new
links between old nodes. More particularly, at every step of
growth we have the following.

(1) With probability p a new node is wired to an existing
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one; the choice of the destination node is left to Barabási-
Albert preferential attachment rule(“rich gets richer”). Thus
the probability of adding a new node and connecting it to an
old nodei is

p
ki

o j=1,N
kj

. s1d

(2) With probability s1−pd a new edge is added(if ab-
sent) between two existing nodes. These are chosen on the
basis of their degree. In other words, the probability of add-

ing an edge between node 1 and node 2 isP̃sk1,k2d. This can
be written asP1sk1dP2sk2uk1d, the second factor being a con-
ditioned probability.P1sk1d is the rule for choosing the first
of the two nodes, and again it is determined by the preferen-

tial attachment. The functional form ofP2sk2uk1d can be cho-
sen so as to favor links between similar or different degree.
In this way, the probability of adding a new edge and con-
necting two old nonlinked nodes is

s1 − pd
ki

o j=1,N
kj

P2sk2uk1d. s2d

In the limit of p=1 the model reduces to a traditional BA
tree. In order to reproduce the assortative behavior we have
explored two different functional forms: an inverse depen-
dence

TABLE I. Results of numerical simulation of the model: exponents of the distributions and assortativity
coefficient for the inversesinv.d and exponentialsexp.d case. Last rowsc-md refers to cond-mat coauthorship
network. The exponent of the site betweenness distribution is not reported since its fluctuations around the
average value of 2.0 are negligible. For cond-mat it is 2.2.r=2+p/2−p andm= u«−g−1/h−1u The error on
the figures is always less than 5%.

p r ginv gexp finv fexp cinv cexp «inv «exp minv mexp

0.1 2.05 2.05 1.73 0.23 0.90 0.58 2.31 1.71 0.94 0.62 0.21

0.2 2.11 2.27 1.83 0.24 0.87 0.61 2.47 1.65 1.09 0.38 0.26

0.3 2.18 2.33 2.18 0.25 0.88 0.65 2.69 1.63 1.16 0.30 0.02

0.4 2.25 2.52 2.33 0.25 0.89 0.73 2.78 1.64 1.27 0.12 0.06

0.5 2.33 2.61 2.45 0.25 0.90 0.67 2.97 1.66 1.34 0.11

0.6 2.43 2.78 2.59 0.23 0.85 0.81 2.90 1.70 1.50

0.7 2.54 2.87 2.71 0.23 0.84 0.74 3.10 1.73 1.61

0.8 2.67 2.92 2.83 0.21 0.76 3.50 1.77 1.71

0.9 2.82 2.96 2.94 0.16 0.67 1.84 1.88

1.0 3.00 3.01 3.09 0 0 2.06 1.99

c-m 2.99 0.14-0.35 −0.80 1.81 0.41

FIG. 1. Degree distribution in the inverse case. The slope in-
creases monotonically asp grows from 0.1 to 1.0. The distribution
for cond-matsc-md is reported for comparison. In the inset, degree
distribution in the exponential case. Asp becomes smaller than 0.5
a peaked structure at high degrees appears.

FIG. 2. Average nearest neighbor degree of the nodes of degree
k in the inversesinv.d and exponentialsexp.d case, and for cond-mat
sc-md. In the exponential case a structure at highk is visible for low
p. For cond-mat distribution, a maximal and a minimal slope can be
defined.
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P2sk2uk1d ~
1

uk1 − k2u + 1
, s3d

and an exponential dependence, which clearly has a stronger
effect

P2sk2uk1d ~ e−uk1−k2u. s4d

Results of simulations for the various values ofp are sum-
marized in Table I, where the fitted exponents of the distri-
butions and the global quantities describing the networks are
reported. Asp grows from 0.1 to 1.0 the change in the sta-
tistical properties is consistent with the rough estimate for
the degree distribution exponent given in Ref.[15],

gspd = 2 +
p

2 − p
. s5d

As p tends to 1.0, the exponent approaches the value 3 of
the BA model. A radically different behavior appears in the
exponential case. While for highp we still have scale-free
distribution, asp decreases a structure ink emerges. Two
regimes become visible: a power-law distribution for lowk
and a peaked distribution for highk.

Similar behavior is evident for all the quantities depend-
ing on k. The transition happens aroundp=0.5. This behav-
ior can be explained as follows. Edges are added mainly
between high-degree nodes because of the “preferential at-
tachment option” adopted in the choice of the first vertex.
Moreover, the strong assortativity deriving from the expo-
nential form imposes a high degree to the second node as
well. Therefore, when the “wiring component” of the growth
prevails(p below 0.5), a cluster of hubs appears. Their de-

grees are sharply distributed around a high value. Thus a
strong assortativity can break up the self-similar structure of
the graph, superimposing a distribution with a typical scale
on the scale-free one. This highlights the typical aspect of an
assortative network, where the hubs(highly connected
nodes) connect with other hubs, generating a core-periphery
structure. This structure is emphasized in the exponential
case, where assortativity becomes so large to induce a phase
transition from a scale-free graph to a network with a char-
acteristic scale for high degrees.

The slope ofKnnskd grows as the assortativity is in-
creased, moving from the inverse to the exponential form,
and reducing the value ofp. The slight inversion in the
growth of the exponent visible at smallp can be explained as
a finite size effect, highlighted by the intense assortativity for
very low values of the parameterp. The BA limit is visible as
well, being the distribution roughly flat forp=1.0. By mea-
suring f and r we note that their trends, as the parameters
change, are analogous. Reasonably enough, we can conclude
that, at least for our model, the exponent and the coefficient
carry the same information.

The clustering coefficient distribution versus the degree
fails to reproduce the real trends. These are usually decreas-
ing with a power law; the model, instead, generates increas-
ing trends. We fit them with a power law with positive ex-
ponent. We can explain qualitatively such incongruence by
taking into account high-degree vertices. In real networks
hubs tend to play the role of connections between separate
clusters in the graph, with few links between each other
(apart from the ones attached to the hub). Therefore this
nodes tend to have low-clustering coefficient. In our model,
on the other hand, all the hubs are aggregated together. Thus,
even producing an assortative network it cannot reproduce a
network withCcskd decreasing withk. We comment that such
behavior in the real data is due to the different areas of ex-
pertise of various authors, such that the most productive sci-
entists in one discipline do not collaborate with the top sci-
entists of other disciplines within cond-mat. Imposing such
separation on the hubs produced by the model reproduces the
correct behavior of data(or rather analyzing the data by di-
viding the papers according to the fields).

As regards the betweenness,bskd is an increasing function
of k (hubs are crucial in the exchange of information). On the
other hand its slope decreases asp is reduced. In a tree like
structuresp=1.0d, hubs are to play the role of bottlenecks for
the flow of information between separate parts of the net-
works. Therefore, they have very high site betweenness. Ap-
proaching to a core-periphery structure, each node of the
core becomes approximately as good as the others in per-
forming this job. Therefore the site betweenness of high-
degree nodes decreases.

The site betweenness distributionPsbd or is plotted after
integration in Fig. 3. We obtain a power law with an expo-
nent not depending significantly onp. Its averaged value is
2.0, which is equal to the measured value for a BA tree[18].
It is interesting to notice that also here a characteristic scale
appears at high values of the site betweenness. This is visible
in the bump that distorts the scale-free nature of the inte-
grated distribution. Notice that we would see a similar dis-

FIG. 3. Integrated site betweenness distribution in the inverse
sinv.d and exponentialsexp.d case, and for cond-matsc-md. As p
tends to 1.0 the branching in the graphs increases. Given a branch
of n nodes, bn starting from the leaves is proportional tosN
−1d ,2sN−2d ,4sN−3d , . . . ,2sn−1dsN−nd. Consequently, in a treelike
structure the site betweenness is quantized. This appears in the dis-
tribution as a succession of power law distributed spikes(stairs in
the integrated distribution). For smallp, a bump is visible, signaling
a characteristic scale. In the inset,b vs k in the inverse and expo-
nential case, and for cond-mat. In the exponential case a structure at
high k is visible for low p.
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torted trend if we integrated the degree distribution.
In Ref. [19] the following scaling relation is demonstrated

for the BA model

b ~ ksg−1d/sh−1d. s6d

Thus, the exponent of the site betweenness plotted versusk is
related to the previous two by the equality

« = sg − 1d/sh − 1d. s7d

This relation stands for disassortative and not assortative net-
works, while deviations are shown for assortative ones in
Ref. [20]. By computing this difference we noticed a slightly
growing trend, asp is decreased, giving further evidence that
assortativity breaks the scaling relation.

The qualitative agreement between the distribution of the
real data and the simulation shows that our model is able to
catch the basic aspects of the real graph, with the only above
mentioned exception of the clustering coefficient versusk. A
quantitative comparison suggests that the exponential form is
too strong to describe existing networks. In fact, the appear-
ance of a characteristic-scale structure such as the one fore-
seen in our model has not been observed in any of the real
assortative networks studied until now. One must notice as
well the slight difference in the exponents of the site be-
tweenness distribution(2.0 for the simulation and 2.2 for
cond-mat). Following Ref.[18], networks should be divided
in two classes of universality according to the exponent of
their site betweenness distribution. In fact this seems to as-
sume always one of the two values 2.0 and 2.2. Coauthorship

networks fall in the second class. Therefore, if the hypothesis
of Ref. [18] were confirmed, our model would fail guess the
correct universality class for the networks that it is thought to
represent. However, this would be reasonable, since the
model can be reduced to a BA tree, which falls in the first
class.

In conclusion, we have studied a generalized graph
growth model, where by tuning a parameterp, it is possible
to weight the role of growing(addition of new nodes) and
mixing (addition of new edges) in the microscopical behav-
ior of the network. The assortativity can be controlled as well
by fixing a functional form for the wiring probability. Mac-
roscopic characteristics of the network, i.e., statistical distri-
butions, have been derived by simulations in the assortative
case. The results reveal the effects of assortativity on the
topology of a network that can be as dramatical as a phase
transition. Moreover, the simulation succeed in reproducing
most of the features of real assortative networks. Future work
could focus on many aspects: new nodes could be added
carrying two edges instead of one, in order to have a BA
graph rather than a BA tree in thep=1.0 limit; the rate of
addition of new nodes and of new links could be measured
for real networks to have a fine tuning of the parameterp;
more general functional forms for the wiring could be inves-
tigated, and even the preferential attachment choice could be
changed, in order to have a significant wiring also for low
degree nodes. Further extensions are possible because of the
rich flexibility of the model.

We thank the FET Open Project No. IST-2001-33555
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